Segmentation of White Blood Cells through Nucleus Mark Watershed Operations and Mean Shift Clustering
نویسندگان
چکیده
This paper presents a novel method for segmentation of white blood cells (WBCs) in peripheral blood and bone marrow images under different lights through mean shift clustering, color space conversion and nucleus mark watershed operation (NMWO). The proposed method focuses on obtaining seed points. First, color space transformation and image enhancement techniques are used to obtain nucleus groups as inside seeds. Second, mean shift clustering, selection of the C channel component in the CMYK model, and illumination intensity adjustment are employed to acquire WBCs as outside seeds. Third, the seeds and NMWO are employed to precisely determine WBCs and solve the cell adhesion problem. Morphological operations are further used to improve segmentation accuracy. Experimental results demonstrate that the algorithm exhibits higher segmentation accuracy and robustness compared with traditional methods.
منابع مشابه
Segmentation of White Blood Cells From Microscopic Images Using a Novel Combination of K-Means Clustering and Modified Watershed Algorithm
Recognition of white blood cells (WBCs) is the first step to diagnose some particular diseases such as acquired immune deficiency syndrome, leukemia, and other blood-related diseases that are usually done by pathologists using an optical microscope. This process is time-consuming, extremely tedious, and expensive and needs experienced experts in this field. Thus, a computer-aided diagnosis syst...
متن کاملRobust Segmentation for Low Quality Cell Images from Blood and Bone Marrow 637 Robust Segmentation for Low Quality Cell Images from Blood and Bone Marrow
Biomedical image is often complex. An applied image analysis system should deal with the images which are of quite low quality and are challenging to segment. This paper presents a framework for color cell image segmentation by learning and classification online. It is a robust two-stage scheme using kernel method and watershed transform. In first stage, a twoclass SVM is employed to discrimina...
متن کاملSegmentation using Morphological Watershed Transformation for Counting Blood Cells
Blood cell counting is a major field of study in biomedical engineering. In human blood cell segmentation cases, many methods are being studied and applied for obtaining better results. In this paper, we present an approach for counting different blood cells during blood smear test. The approach which is presented in this paper is by segmentation using morphological watershed transformation. Mo...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کامل